我们提供安全,免费的手游软件下载!
Redis中的数据类型指的是 value存储的数据类型,key都是以String类型存储的,value根据场景需要,可以以String、List等类型进行存储。
各数据类型介绍:
Redis数据类型对应的底层数据结构
存放键值:set key value [EX seconds] [PX milliseconds] [NX|XX]
[NX|XX] :
nx:如果key不存在则建立
xx:如果key存在则修改其值,也可以直接使用setnx/setex命令
获取键值:get key
值递增/递减:incr key
批量存放键值:mset key value [key value ...]
批量获取键值:mget key [key ...]
获取值长度:strlen key
追加内容:append key value
获取部分字符:getrange key start end
使用 String 来缓存对象有两种方式:
比如计算访问次数、点赞、转发、库存数量等等。
# 初始化文章的阅读量
> SET aritcle:readcount:1001 0
OK
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 1
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 2
之所以采用Redis来作为分布式锁,可以有几方面理由:
setnx + expire
的机制,完全契合分布式锁的实现要点
Redisson
客户端的流行,使得基于redis的分布式锁更加简单
SET 命令有个 NX 参数可以实现「key不存在才插入」,可以用它来实现分布式锁:
一般而言,还会对分布式锁加上过期时间,分布式锁的命令如下:
SET lock_key unique_value NX PX 10000
通常情况下可以使用session信息保存用户的登录(会话)状态,由于这些 Session 信息会被保存在服务器端,如果用户一的 Session 信息被存储在服务器一,但第二次访问时用户一被分配到服务器二,这个时候服务器并没有用户一的 Session 信息,就会出现需要重复登录的问题。如下:
可以借助 Redis 对这些 Session 信息进行统一的存储和管理,这样无论请求发送到那台服务器,服务器都会去同一个 Redis 获取相关的 Session 信息,这样就解决了分布式系统下 Session 存储的问题。
存储值:
弹出元素:
获取元素个数:llen key
获取列表元素:
删除元素:
但是有两个问题:
存放值:
获取字段值:
判断是否存在:hexists key field
获取字段数量:hlen key
递增/减:hincrby key field increment
删除字段:hdel key field [field ...]
一般对象用 String + Json 存储,对象中某些频繁变化的属性可以考虑抽出来用 Hash 类型存储。
以用户 id 为 key,商品 id 为 field,商品数量为 value,恰好构成了购物车的3个要素,如下图所示。
涉及的命令如下:
聚合计算(并集、交集、差集)场景,比如点赞、共同关注、抽奖活动等。
存储值:sadd key member [member ...]
获取所有元素:smembers key
随机获取:srandmember langs count
判断是否存在某member:sismember key member
获取集合中元素个数:scard key
删除集合元素:srem key member [member ...]
弹出元素:spop key [count]
可以保证 一个用户只能点一个赞 ,已经点赞过的用户不能再点赞
# uid:1 用户对文章 article:1 点赞
> SADD article:1 uid:1
(integer) 1
# uid:2 用户对文章 article:1 点赞
> SADD article:1 uid:2
(integer) 1
# uid:3 用户对文章 article:1 点赞
> SADD article:1 uid:3
(integer) 1
# uid:1 取消了对 article:1 文章点赞。
> SREM article:1 uid:1
(integer) 1
# 获取 article:1 文章所有点赞用户 :
> SMEMBERS article:1
1) "uid:3"
2) "uid:2"
# 获取 article:1 文章的点赞用户数量:
> SCARD article:1
(integer) 2
Set 类型 支持交集运算 ,所以可以用来计算共同关注的好友、公众号等。
key 可以是用户id,value 则是已关注的公众号的id。
# uid:1 用户关注公众号 id 为 5、6、7、8、9
> SADD uid:1 5 6 7 8 9
(integer) 5
# uid:2 用户关注公众号 id 为 7、8、9、10、11
> SADD uid:2 7 8 9 10 11
(integer) 5
# 获取共同关注
> SINTER uid:1 uid:2
1) "7"
2) "8"
3) "9"
# 给 uid:2 推荐 uid:1 关注的公众号:在uid:1中有但是uid:2中没有的
> SDIFF uid:1 uid:2
1) "5"
2) "6"
# 验证某个公众号是否同时被 uid:1 或 uid:2 关注:
> SISMEMBER uid:1 5
(integer) 1 # 返回0,说明关注了
> SISMEMBER uid:2 5
(integer) 0 # 返回0,说明没关注
存储某活动中中奖的用户名 ,Set 类型因为有去重功能,可以 保证同一个用户不会中奖两次 。
# key为抽奖活动名,value为员工名称,把所有员工名称放入抽奖箱 :
>SADD lucky Tom Jerry John Sean Marry Lindy Sary Mark
(integer) 5
# 如果允许重复中奖,可以使用 SRANDMEMBER 命令。
# 抽取 1 个一等奖:
> SRANDMEMBER lucky 1
1) "Tom"
# 抽取 2 个二等奖:
> SRANDMEMBER lucky 2
1) "Mark"
2) "Jerry"
# 抽取 3 个三等奖:
> SRANDMEMBER lucky 3
1) "Sary"
2) "Tom"
3) "Jerry"
# 如果不允许重复中奖,可以使用 SPOP 命令。
# 抽取一等奖1个
> SPOP lucky 1
1) "Sary"
# 抽取二等奖2个
> SPOP lucky 2
1) "Jerry"
2) "Mark"
# 抽取三等奖3个
> SPOP lucky 3
1) "John"
2) "Sean"
3) "Lindy"
排序场景,比如排行榜、电话和姓名排序等。
typedef struct zset {
dict *dict;//哈希表
zskiplist *zsl;//跳表
} zset;
zset 结构体里有两个数据结构:一个是跳表,一个是哈希表。这样的好处是既能进行高效的范围查询(如 ZRANGEBYSCORE 操作,利用了跳表),也能进行高效单点查询(如 ZSCORE 操作,利用了hash表)。
五篇博文,分别获得赞为 200、40、100、50、150。
# arcticle:1 文章获得了200个赞
> ZADD user:seven:ranking 200 arcticle:1
(integer) 1
# arcticle:2 文章获得了40个赞
> ZADD user:seven:ranking 40 arcticle:2
(integer) 1
# arcticle:3 文章获得了100个赞
> ZADD user:seven:ranking 100 arcticle:3
(integer) 1
# arcticle:4 文章获得了50个赞
> ZADD user:seven:ranking 50 arcticle:4
(integer) 1
# arcticle:5 文章获得了150个赞
> ZADD user:seven:ranking 150 arcticle:5
(integer) 1
# 获取文章赞数最多的 3 篇文章, ZREVRANGE 命令(倒序获取有序集合 key 从start下标到stop下标的元素)
# WITHSCORES 表示把 score 也显示出来
> ZREVRANGE user:seven:ranking 0 2 WITHSCORES
1) "arcticle:1"
2) "200"
3) "arcticle:5"
4) "150"
5) "arcticle:3"
6) "100"
# 获取 100 赞到 200 赞的文章,ZRANGEBYSCORE 命令(返回有序集合中指定分数区间内的成员,分数由低到高排序)
> ZRANGEBYSCORE user:xiaolin:ranking 100 200 WITHSCORES
1) "arcticle:3"
2) "100"
3) "arcticle:5"
4) "150"
5) "arcticle:1"
6) "200"
# 将电话号码存储到 SortSet 中,然后根据需要来获取号段:
> ZADD phone 0 13100111100 0 13110114300 0 13132110901
(integer) 3
> ZADD phone 0 13200111100 0 13210414300 0 13252110901
(integer) 3
> ZADD phone 0 13300111100 0 13310414300 0 13352110901
(integer) 3
# 获取所有号码
> ZRANGEBYLEX phone - +
1) "13100111100"
2) "13110114300"
3) "13132110901"
4) "13200111100"
5) "13210414300"
6) "13252110901"
7) "13300111100"
8) "13310414300"
9) "13352110901"
# 获取 132 号段的号码:
> ZRANGEBYLEX phone [132 (133
1) "13200111100"
2) "13210414300"
3) "13252110901"
# 获取132、133号段的号码:
> ZRANGEBYLEX phone [132 (134
1) "13200111100"
2) "13210414300"
3) "13252110901"
4) "13300111100"
5) "13310414300"
6) "13352110901"
> zadd names 0 Toumas 0 Jake 0 Bluetuo 0 Gaodeng 0 Aimini 0 Aidehua
(integer) 6
# 获取所有人的名字:
> ZRANGEBYLEX names - +
1) "Aidehua"
2) "Aimini"
3) "Bluetuo"
4) "Gaodeng"
5) "Jake"
6) "Toumas"
# 获取名字中大写字母A开头的所有人:
> ZRANGEBYLEX names [A (B
1) "Aidehua"
2) "Aimini"
# 获取名字中大写字母 C 到 Z 的所有人:
> ZRANGEBYLEX names [C [Z
1) "Gaodeng"
2) "Jake"
3) "Toumas"
适用于二值状态统计的场景。
只记录签到(1)或未签到(0)
# 记录用户 4 月 3 号已签到
SETBIT uid:sign:100:202304 2 1
# 检查该用户 6 月 3 日是否签到
> GETBIT uid:sign:100:202306 3
1
# 统计用户在 6 月份的签到次数
> BITCOUNT uid:sign:100:202206
1
# 统计这个月首次打卡时间;BITPOS key bitValue [start] [end],start end 表示要检测的范围
BITPOS uid:sign:100:202206 1
key = login_status 表示存储用户登陆状态集合数据, 将用户 ID 作为 offset,在线就设置为 1,下线设置 0。通过 GETBIT判断对应的用户是否在线。 5000 万用户只需要 6 MB 的空间。
# 表示ID = 10086 的用户已登陆
SETBIT login_status 10086 1
# 检查该用户是否登陆,返回值 1 表示已登录
GETBIT login_status 10086
# 登出,将 offset 对应的 value 设置成 0。
SETBIT login_status 10086 0
把每天的日期作为 Bitmap 的 key,userId 作为 offset,若是打卡则将 offset 位置的 bit 设置成 1。key 对应的集合的每个 bit 位的数据则是一个用户在该日期的打卡记录。
那就可以设置 7 个 Bitmap,对这 7 个 Bitmap 的对应的 bit 位做 『与』运算。那么当一个 userID 在 7 个 Bitmap 对应对应的 offset 位置的 bit = 1 就说明该用户 7 天连续打卡。结果保存到一个新 Bitmap 中,我们再通过 BITCOUNT 统计 bit = 1 的个数便得到了连续打卡 7 天的用户总数了。
海量数据基数统计的场景,提供不精确的去重计数。但要注意,HyperLogLog 的统计规则是基于概率完成的,不是非常准确,标准误算率是 0.81%。因此适用于海量数据的场景。
HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的内存空间总是固定的、并且是很小的。在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。
在统计 UV 时,可以用 PFADD 命令(用于向 HyperLogLog 中添加新元素)把访问页面的每个用户都添加到 HyperLogLog 中。
PFADD page1:uv user1 user2 user3 user4 user5
# 可以用 PFCOUNT 命令直接获得 page1 的 UV 值,获取统计结果
PFCOUNT page1:uv
存储地理位置信息的场景
Redis GEO 操作方法有:
GEORADIUS方法参数:
GEORADIUS key longitude latitude radius m|km|ft|mi [WITHCOORD] [WITHDIST] [WITHHASH] [COUNT count] [ASC|DESC] [STORE key] [STOREDIST key]
参数说明:
假设车辆 ID 是 33,经纬度位置是(116.034579,39.030452),可以用一个 GEO 集合保存所有车辆的经纬度,集合 key 是 cars:locations。
GEOADD cars:locations 116.034579 39.030452 33
当用户想要寻找自己附近的网约车时,LBS 应用就可以使用 GEORADIUS 命令。
例如,LBS 应用执行下面的命令时,Redis 会根据输入的用户的经纬度信息(116.054579,39.030452 ),查找以这个经纬度为中心的 5 公里内的车辆信息,并返回给 LBS 应用。
GEORADIUS cars:locations 116.054579 39.030452 5 km ASC COUNT 10
nearbyPeople 是一个总的 key,user_1 和 user_2 是相当于 nearbyPeople 里面的两个元素以及他们对应的经纬度,这个例子就是把 user_1 和 user_2 的经纬度存在了 nearbyPeople 这个 key 中
redis> GEOADD nearbyPeople 13.36 38.11 "user_1" 15.08 37.50 "user_2"
(integer) 2
获取 nearbyPeople 中的元素 user_1 和 user_2 这两个元素的经纬度,当然如果之前没有 geoadd 相对应元素的经纬度的话,会返回 nil
redis> GEOPOS nearbyPeople user_1 user_21) 1) "13.36138933897018433" 2) "38.11555639549629859"2) 1) "15.08726745843887329" 2) "37.50266842333162032"
获取 nearbyPeople 中 user_1 和 user_2 这两个节点之间的距离,距离单位可以指定,如下所示:
redis> GEODIST nearbyPeople user_1 user_2"166274.1516"redis> GEODIST nearbyPeople user_1 user_2 km"166.2742"redis> GEODIST nearbyPeople user_1 user_2 mi"103.3182"
把 nearbyPeople 中的 距离经纬度(15,37)200km 以内的元素都找出来,而且带上距离:
redis>GEORADIUS nearbyPeople 15 37 200 km WITHDIST
1) 1) "user_1"
2) "190.4424"
2) 1) "user_2"
2) "56.4413"
消息队列,解决了基于 List 类型实现的消息队列中存在的两个问题。
可以自动生成全局唯一消息ID,并支持以消费组形式消费数据。
Java面试题专栏 已上线,欢迎访问。
那么可以私信我,我会尽我所能帮助你。
热门资讯